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The New Transportation System

New dimensions of complexity is shaping our transport system
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The Transportation Sector: Environmental Insights

Figure 1: Share of U.S
GHG Emissions by
Sector, 2019 [1]

Figure 2: Share of U.S.
Transportation Sector
GHG Emissions by
Source, 2019 [1]

Figure 3: Commute
share by Mode, 2019 [2]

Most polluting sector in the US; overtaking the power sector

On-road vehicles and driving alone are major contributors to transport
pollution
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Challenges

To realize the full potential of automated vehicles and incorporate them
into our system, an analysis into their behavior and impacts is needed
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Research Objectives

Overarching Goal

Guide the design and deployment of Automated Vehicles in ways that are
not myopic but consider system-level benefits

Wissam Kontar University of Wisconsin-Madison 7 / 28



Chapter: Outline

Part 1:
Automated Vehicles and their
Implications on Transportation

Operation
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Analysis of Automated Vehicles Behavior

Automated Vehicle Behavior

1 What governs their behavior logic?

2 How can we translate their driving mechanisms into the traffic-level
operational impact
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The Asymmetric Behavioral (AB) Model

Principal Idea

Physics-based car-following model: Vehicle’s temporal deviation in time gap
(τ) or constant minimum spacing (δ) from its equilibrium position as
defined by Newell, expressed through parameter ηi (t)

yi (t) = yi−1(t − ηi (t)τ)− ηi (t)δ (1)

where yi and yi−1 are the positions of vehicle i and its leader i − 1

η(t) : Highlights key aggregate characteristics and trends that influence the
disturbance propagation (magnitude, direction and duration of different

phases, reaction to the leader trajectory)
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Emperical Analysis on Commercially Available
Automation Technologies

Reaction patterns of AB model (η(t) evolution) can capture main
characteristics of controller design and explain the governing physical
behavior
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Control Logic of Automated Vehicles

The system state is described by: xi (t) = [∆di (t),∆vi (t), ai (t)]
T

Deviation of actual spacing from equilibrium spacing:
∆di (t) = di (t)− d∗

i (t)

Speed difference between leader and follower: ∆vi (t) = vi−1(t)− vi (t)

Acceleration: ai (t)

The control input ui (t) is then formulated as:

ui (t) = KT
i xi (t)

KT
i = [ksi , kvi , kai ]

(2)

ks : Feedback gain for the deviation from equilibrium spacing

kv : Feedback gain for the speed difference

ka: Feedback gain for the acceleration

KT
i denotes the regulation magnitude for each component; governs the

vehicle behavior
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Analysis of Control Mechanisms and Behavior

How the control logic you design impacts the driving behavior of an AV.

Ki Coefficient Controller Command Effect of |ki |↑
ks ∆di (t) Maintain the target spacing Pushes towards neutral behavior
kv ∆vi (t) Match the leader’s speed Generates responsive behavior (concave-convex pattern)
ka ai (t) Minimize acceleration Resists acceleration change (convex-concave pattern)
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Range of Behavior from an Automated Vehicle

There exists a tradeoff between safety, efficiency, and stability from an
AV control logic

A significant commercial ACC vehicles and self-driving systems have
undesired traffic-level properties
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Dealing with the Uncertain

What about real-life operations?

Discrepancy between desired performance and realized performance from
controller given and uncertainty of the physical world

Stochastic control parameters can affect traffic-level performance of an AV

Wissam Kontar University of Wisconsin-Madison 15 / 28



Some Stochastic Parameters of Importance

Lower Level Design: General Longitudinal Vehicle Dynamics:

ȧ(t) =
−1

TL
a(t) +

KL

TL
u(t) (3)

Actuation Lag (TL), KL (the ratio between demanded and realized
acceleration), and response time (τ∗) can significantly shrink the attainable
stability region for the AV and can be stochastic in real-time operation:
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Addressing Uncertainties in the Physical World

Real-time Parameter Estimations using Sensor Data

Gauge the AV car-following performance in real-time and preserve performance
against real-time uncertainty that are unaccounted for in the vehicle control
algorithm

Bayesian approach to parameter estimations

min
K t

L,T
t
L

−

(
logP(K t

L,T
t
L) +

Nt̃∑
i

logP(ȧi |ai , ui ,K t
L,T

t
L)

)
(4)

where logP(ȧi |ai , ui ,K t
L ,T

t
L) is written as the log Gaussian likelihood,

− 1
2 log σ

2 − 1
2σ2 (ȧi − ȧ(t))2. Using the log Gaussian likelihood comes with the

assumption that ϵ(t) ∼ N (0, σ2), where ϵ(t) is the additive error/noise parameter.
Stochastic Gradient Langevin Dynamics (SGLD) solution

∇(K t
L ,T

t
L) =

ηt
2

(
∇ logP(K t

L ,T
t
L) +

Nt̃

n

n∑
i=1

∇ logP(ȧi |ai , ui ,K t
L ,T

t
L)

)
+ ϵt (5)

ϵt ∼ N (0, ηt I ) (6)
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Real-time Parameter Profiling

Estimation Profiles

Use real-time information (sensor data) to detect abnormalities in TL & KL.
This allows for adjusting our knowledge of these parameters in the controller,
as well as taking strategic decisions to benefit the stability of traffic.
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The Real-time Strategic Approach
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Chapter: Emerging Modes of Transportation

Part 2:
Adoption Patterns of Automated
Vehicles and their Environmental

Implications
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Research Question

Autonomous Vehicle Adoption

What are the environmental tradeoffs resulting from the adoption of
autonomous vehicles (AVs)?

If they are available as a mode of transportation, how would their user
adoption pattern look like?
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Research Methods

A. Mode Choice Modeling: Traveler’s probability of choosing a mode of
transportation in presence of other modes; informed through survey data

Pn =

∫
β

eβnXni∑
j e

βnXnj
f (β, θ)dβ (7)

B. Use-Phase Life Cycle Analysis (LCA): Quantifying environmental
emissions of modes of transportation on a per-mile basis
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Autonomous Vehicle Adoption: Study Results

A stated preference survey was deployed to collect data from 805
participants in Madison, Wisconsin.

Major findings:

Autonomous vehicles were a desirable mode of transportation by travelers:
reducing ridership of public transport and bicycles (i.e., the bus in Madison)

Autonomous Vehicles had the lowest estimated value to time (VOT) of
($16.31/hr), as compared to busses ($26.8/hr) and personal vehicles
($20.4/hr).

Autonomous Vehicle’s ability to cut cost, access time, waiting time, and
parking where significant contributors to its adoption.
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Autonomous Vehicle Adoption: Study Results

Environmental Implications of AV’s induced modal shifts: An overall
increase in environmental emissions
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Environmental Implications of AV’s Induced Modal
Shifts

Environmental Implications:

Adoption of AV’s would increase environmental emissions across all categories

Policies to incentivize public transport usage can reduce impacts of AV
adoption; but unable to offset it

Wissam Kontar University of Wisconsin-Madison 25 / 28



The Adoption of Electric Autonomous Vehicles

Electric Autonomous Vehicles adoption

Can offset the environmental impacts of AV adoption

Benefits expected are dependent on adoption rates and electricity generation
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Conclusions
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