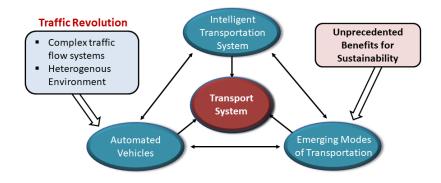
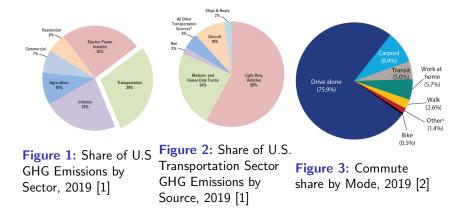
The Promise of an Efficient and Sustainable Transport System: An Investigation into Automated Vehicles

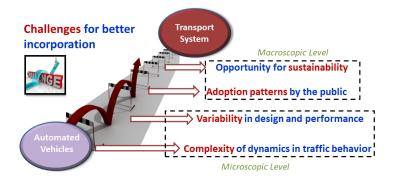

Presenter: **Wissam Kontar, Ph.D.** Website: https://wissamkontar.github.io/

- Motivation and Research Framework
- 2 Emerging Modes of Transportation: Automated Vehicles
 - Automated Vehicles: Implications on Transportation Operation
 - Automated Vehicles: Adoption Patterns, Competition, and Environmental Implications
- Onclusions


Motivation & Research Framework

The New Transportation System

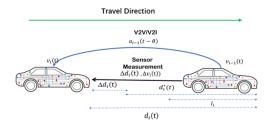
New dimensions of complexity is shaping our transport system


The Transportation Sector: Environmental Insights

- Most polluting sector in the US; overtaking the power sector
- On-road vehicles and driving alone are major contributors to transport pollution

Challenges

• To realize the full potential of automated vehicles and incorporate them into our system, an analysis into their behavior and impacts is needed



Overarching Goal

Guide the design and deployment of Automated Vehicles in ways that are not myopic but consider system-level benefits

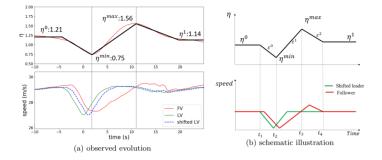
Part 1: Automated Vehicles and their Implications on Transportation Operation

Analysis of Automated Vehicles Behavior

Automated Vehicle Behavior

- What governs their behavior logic?
- Observational experimentation of the translate their driving mechanisms into the traffic-level operational impact

Principal Idea


Physics-based car-following model: Vehicle's temporal deviation in time gap (τ) or constant minimum spacing (δ) from its equilibrium position as defined by Newell, expressed through parameter $\eta_i(t)$

$$y_i(t) = y_{i-1}(t - \eta_i(t)\tau) - \eta_i(t)\delta$$
(1)

where y_i and y_{i-1} are the positions of vehicle *i* and its leader i-1

 $\eta(t)$: Highlights key aggregate characteristics and trends that influence the disturbance propagation (magnitude, direction and duration of different phases, reaction to the leader trajectory)

Emperical Analysis on Commercially Available Automation Technologies

• Reaction patterns of AB model ($\eta(t)$ evolution) can capture main characteristics of controller design and explain the governing physical behavior

Control Logic of Automated Vehicles

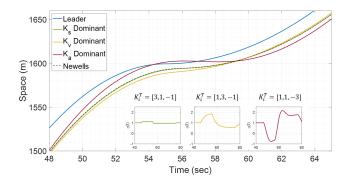
The system state is described by: $\mathbf{x}_i(t) = [\Delta d_i(t), \Delta v_i(t), a_i(t)]^T$

- Deviation of actual spacing from equilibrium spacing: $\Delta d_i(t) = d_i(t) - d_i^*(t)$
- Speed difference between leader and follower: $\Delta v_i(t) = v_{i-1}(t) v_i(t)$
- Acceleration: $a_i(t)$

The control input $u_i(t)$ is then formulated as:

$$u_i(t) = \mathbf{K}_i^T \mathbf{x}_i(t)$$

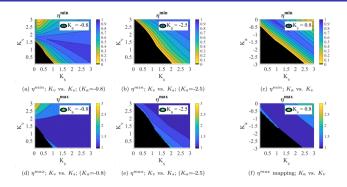
$$\mathbf{K}_i^T = [k_{si}, k_{vi}, k_{ai}]$$
(2)


- k_s: Feedback gain for the deviation from equilibrium spacing
- k_v : Feedback gain for the speed difference
- k_a : Feedback gain for the acceleration

 K_i^T denotes the regulation magnitude for each component; governs the vehicle behavior

Wissam Kontar

Analysis of Control Mechanisms and Behavior


How the control logic you design impacts the driving behavior of an AV.

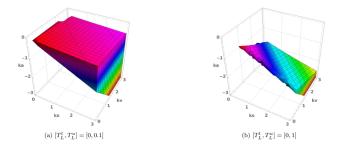
Ki	Coefficient	Controller Command	Effect of $ k_i $
ks	$\Delta d_i(t)$	Maintain the target spacing	Pushes towards neutral behavior
k_v	$\Delta v_i(t)$	Match the leader's speed	Generates responsive behavior (concave-convex pattern)
ka	$a_i(t)$	Minimize acceleration	Resists acceleration change (convex-concave pattern)

Wiss		

Range of Behavior from an Automated Vehicle

- There exists a tradeoff between safety, efficiency, and stability from an AV control logic
- A significant commercial ACC vehicles and self-driving systems have undesired traffic-level properties

What about real-life operations?


- Discrepancy between desired performance and realized performance from controller given and uncertainty of the physical world
- Stochastic control parameters can affect traffic-level performance of an AV

Some Stochastic Parameters of Importance

Lower Level Design: General Longitudinal Vehicle Dynamics:

$$\dot{a}(t) = \frac{-1}{T_L}a(t) + \frac{K_L}{T_L}u(t)$$
(3)

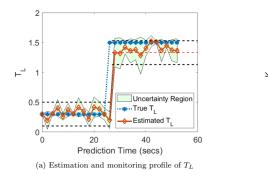
Actuation Lag (T_L), K_L (the ratio between demanded and realized acceleration), and response time (τ^*) can significantly shrink the attainable stability region for the AV and can be stochastic in real-time operation:

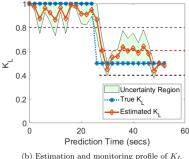
Addressing Uncertainties in the Physical World

Real-time Parameter Estimations using Sensor Data

Gauge the AV car-following performance in real-time and preserve performance against real-time uncertainty that are unaccounted for in the vehicle control algorithm

Bayesian approach to parameter estimations


$$\min_{K_L^t, T_L^t} - \left(\log P(K_L^t, T_L^t) + \sum_i^{N_t} \log P(\dot{a}_i | a_i, u_i, K_L^t, T_L^t) \right)$$
(4)

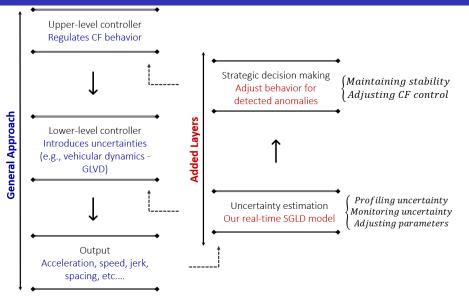

where $\log P(\dot{a}_i|a_i, u_i, K_L^t, T_L^t)$ is written as the log Gaussian likelihood, $-\frac{1}{2}\log\sigma^2 - \frac{1}{2\sigma^2}(\dot{a}_i - \dot{a}(t))^2$. Using the log Gaussian likelihood comes with the assumption that $\epsilon(t) \sim \mathcal{N}(0, \sigma^2)$, where $\epsilon(t)$ is the additive error/noise parameter. **Stochastic Gradient Langevin Dynamics (SGLD) solution**

$$\nabla(\mathcal{K}_{L}^{t}, T_{L}^{t}) = \frac{\eta_{t}}{2} \left(\nabla \log P(\mathcal{K}_{L}^{t}, T_{L}^{t}) + \frac{N_{\tilde{t}}}{n} \sum_{i=1}^{n} \nabla \log P(\dot{a}_{i} | a_{i}, u_{i}, \mathcal{K}_{L}^{t}, T_{L}^{t}) \right) + \epsilon_{t} \quad (5)$$

$$\epsilon_{t} \sim \mathcal{N}(0, \eta_{t} \mathbf{I}) \tag{6}$$

Wissam Kontar

Real-time Parameter Profiling



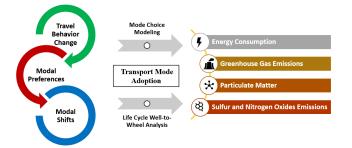
Estimation Profiles

Use real-time information (sensor data) to detect abnormalities in $T_L \& K_L$. This allows for adjusting our knowledge of these parameters in the controller, as well as taking strategic decisions to benefit the stability of traffic.

The Real-time Strategic Approach

Part 2: Adoption Patterns of Automated Vehicles and their Environmental Implications

Autonomous Vehicle Adoption

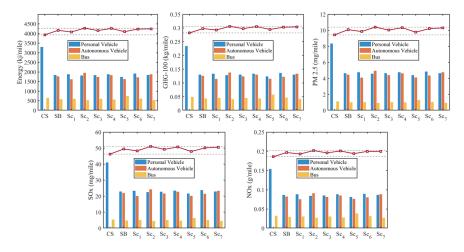

- What are the environmental tradeoffs resulting from the adoption of autonomous vehicles (AVs)?
- If they are available as a mode of transportation, how would their user adoption pattern look like?

Research Methods

A. Mode Choice Modeling: Traveler's probability of choosing a mode of transportation in presence of other modes; informed through survey data

$$\mathcal{P}^{n} = \int_{\beta} \frac{e^{\beta_{n} \mathcal{X}_{ni}}}{\sum_{j} e^{\beta_{n} \mathcal{X}_{nj}}} f(\beta, \theta) d\beta$$
(7)

B. Use-Phase Life Cycle Analysis (LCA): Quantifying environmental emissions of modes of transportation on a per-mile basis


A stated preference survey was deployed to collect data from 805 participants in Madison, Wisconsin.

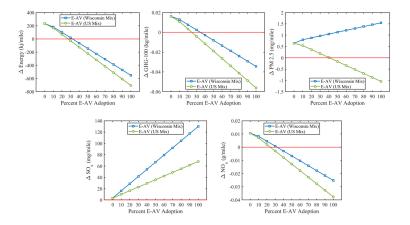
Major findings:

- Autonomous vehicles were a desirable mode of transportation by travelers: reducing ridership of public transport and bicycles (i.e., the bus in Madison)
- Autonomous Vehicles had the lowest estimated value to time (VOT) of (\$16.31/hr), as compared to busses (\$26.8/hr) and personal vehicles (\$20.4/hr).
- Autonomous Vehicle's ability to cut cost, access time, waiting time, and parking where significant contributors to its adoption.

Autonomous Vehicle Adoption: Study Results

Environmental Implications of AV's induced modal shifts: An overall increase in environmental emissions

Environmental Implications of AV's Induced Modal Shifts

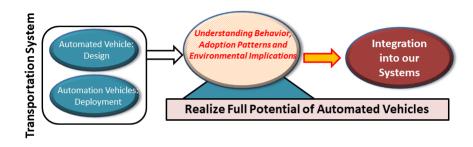

Scenario	Description				
Sc1	20% increase in AV travel cost				
Sc2	20% decrease in AV travel cost				
Sc3	20% decrease in bus access time (walking and waiting)				
Sc4	20% increase in personal vehicle travel cost				
Sc5	20% decrease in bus travel time				
Sc6	20% increase in personal vehicle and AV travel time				
Sc7	10% increase in AV travel cost with 20% decrease in its travel time				

Environmental impact	Survey (SB)	Sc1	Sc2	Sc3	Sc4	Sc5	Sc6	Sc7
Energy consumption (kJ mile ⁻¹)	+5.93%	+3.81%	+8.81%	+5.66%	+8.41%	+4.17%	+7.64%	+7.82%
GHG-100 (kg mile ⁻¹)	+5.72%	+3.68%	+8.47%	+5.48%	+8.14%	+4.30%	+7.47%	+7.51%
PM 2.5 (mg mile ⁻¹)	+6.80%	+4.39%	+10.20%	+6.36%	+9.52%	+3.51%	+8.31%	+9.14%
SO_x (mg mile ⁻¹)	+6.85%	+4.41%	+10.26%	+6.40%	+9.56%	+3.47%	+8.34%	+9.19%
NO_x (g mile ⁻¹)	+5.70%	+3.67%	+8.44%	+5.47%	+8.12%	+4.35%	+7.46%	+7.58%

Environmental Implications:

- Adoption of AV's would increase environmental emissions across all categories
- Policies to incentivize public transport usage can reduce impacts of AV adoption; but unable to offset it

The Adoption of Electric Autonomous Vehicles


Electric Autonomous Vehicles adoption

- Can offset the environmental impacts of AV adoption
- Benefits expected are dependent on adoption rates and electricity generation

Wissam Kontar

University of Wisconsin-Madison

26 / 28

- [1] EPA (2021). Fast facts u.s. transportation sector greenhouse gas emissions 1990-2019.
- [2] USDOT (2021). Transportation statistics annual report, 2021. *Bureau of Transportation Statistics*.